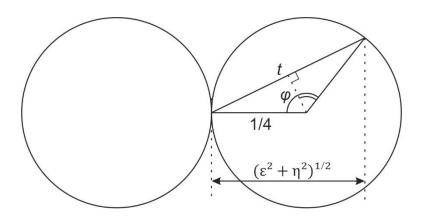
Däumler's mapping onto the horn torus

To visualize the mapping to the surface of the horn torus using Mathcad software, I need to specify parametric equations, in which two parameters x and y determine the three Cartesian coordinates ξ , η and ζ of any point on the surface:

$$F(x, y) = F(\xi(x, y), \eta(x, y), \zeta(x, y))$$

For this, I need to derive formulas for $\xi(x, y)$, $\eta(x, y)$ and $\zeta(x, y)$. Let's consider an auxiliary drawing (below).



It's obvious that $\xi = x \cdot \frac{\sqrt{\xi^2 + \eta^2}}{\sqrt{x^2 + y^2}}$ and $\eta = y \cdot \frac{\sqrt{\xi^2 + \eta^2}}{\sqrt{x^2 + y^2}}$, where: $\sqrt{\xi^2 + \eta^2} = t \cdot \cos\left(\frac{\pi}{2} - \frac{\phi}{2}\right) = t \cdot \sin\frac{\phi}{2}$

and

$$t = 2 \cdot \frac{1}{4} \sin \frac{\phi}{2} = \frac{1}{2} \sin \frac{\phi}{2}$$

Furthermore:

$$\zeta = t \cdot \sin\left(\frac{\pi}{2} - \frac{\phi}{2}\right) + \frac{1}{2} = t \cdot \cos\frac{\phi}{2} + \frac{1}{2} = \frac{1}{2}\sin\frac{\phi}{2} \cdot \cos\frac{\phi}{2} + \frac{1}{2} = \frac{1}{4}\sin\phi + \frac{1}{2}$$

The Däumler's formula for the "meridian" angle ϕ is:

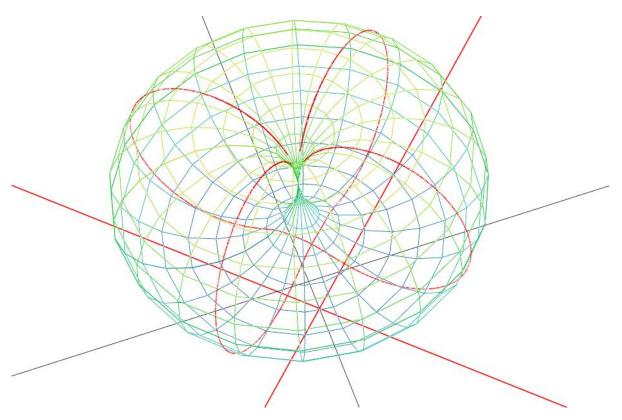
$$\phi = 2 \cdot \operatorname{arccot}(-\ln(|\operatorname{tan}(\operatorname{arccot}(|z|))|))$$

Thus, we have formulas (by Wolfgang Däumler) for mapping onto the horn torus:

$$\xi = x \cdot \frac{\frac{1}{2} \left(\sin\left(\frac{\phi}{2}\right) \right)^2}{\sqrt{x^2 + y^2}}$$
$$\eta = y \cdot \frac{\frac{1}{2} \left(\sin\left(\frac{\phi}{2}\right) \right)^2}{\sqrt{x^2 + y^2}}$$

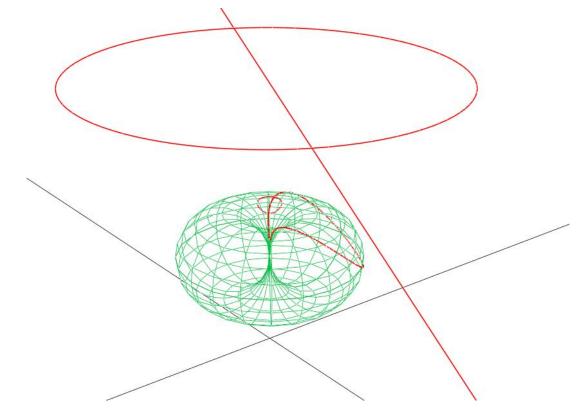
$$\zeta = \frac{1}{4}\sin\phi + \frac{1}{2}$$

The result of mapping of some lines onto the horn torus is given below.



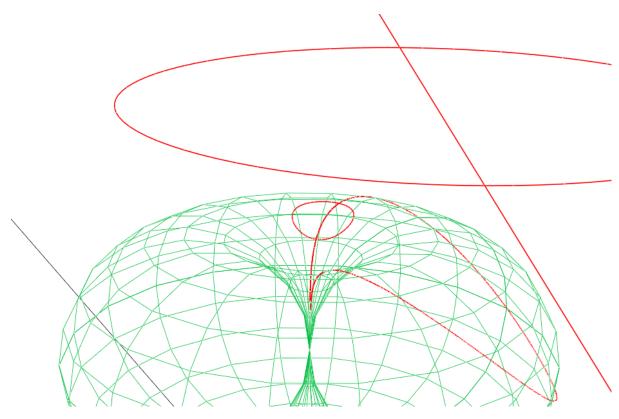
 $[\]mathsf{T}, \mathsf{S}, \mathsf{O}, \mathsf{O}_p, \mathsf{Z}, \mathsf{Z}_t, \mathsf{Z}, \mathsf{s}_1, \mathsf{s}_2, \mathsf{s}_3, \mathsf{Ox}, \mathsf{Oy}, \mathsf{C}_p, \mathsf{C}_t, \mathsf{L}_p, \mathsf{L}_t$

Two lines passing through points (-0.1, 0), (0, 0.1) and (0.1, 0).



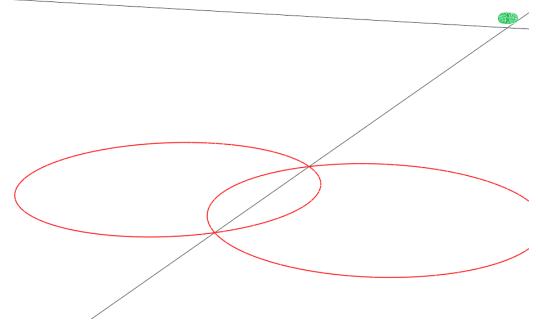
 $\mathsf{T}, \mathsf{S}, \mathsf{O}, \mathsf{O}_p, \mathsf{Z}, \mathsf{Z}_t, \mathsf{Z}, \mathsf{s}_1, \mathsf{s}_2, \mathsf{s}_3, \mathsf{Ox}, \mathsf{Oy}, \mathsf{C}_p, \mathsf{C}_t, \mathsf{L}_p, \mathsf{L}_t, \mathsf{C}_f$

A circle of radius 2 with center (3, 4) and a line y(x) = 2x - 2.



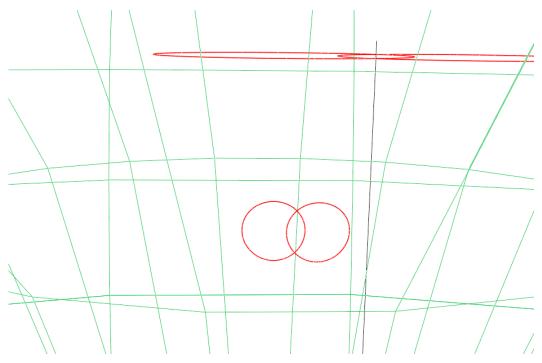
 ${\tt T,S,O,O_p,Z,Z_t,Z,s_1,s_2,s_3,Ox,Oy,C_p,C_t,L_p,L_t,C_f}$

The same (a circle of radius 2 with center (3,4) and a line y(x) = 2x - 2), but under magnification.



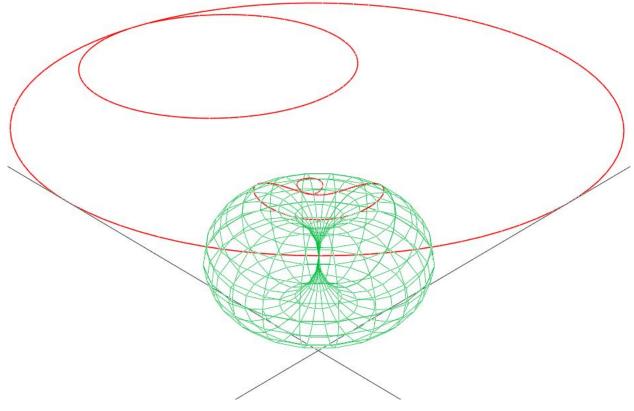
 $\mathtt{T}, \mathtt{S}, \mathtt{O}, \mathtt{O}_p, \mathtt{Z}, \mathtt{Z}_t, \mathtt{Z}, \mathtt{s}_1, \mathtt{s}_2, \mathtt{s}_3, \mathtt{Ox}, \mathtt{Oy}, \mathtt{C}_p, \mathtt{C}_t, \mathtt{L}_p, \mathtt{L}_t, \mathtt{C}_f$

Two circles. A circle of radius 4 with center $\left(-\frac{\sqrt{2}}{2}, 30\right)$ and a circle of radius 4 with center $\left(\frac{\sqrt{2}}{2}, 30\right)$ (circles cross at right angle).



 $\mathsf{T},\mathsf{S},\mathsf{O},\mathsf{O}_p,\mathsf{Z},\mathsf{Z}_t,\mathsf{Z},\mathsf{s}_1,\mathsf{s}_2,\mathsf{s}_3,\mathsf{Ox},\mathsf{Oy},\mathsf{C}_p,\mathsf{C}_t,\mathsf{L}_p,\mathsf{L}_t,\mathsf{C}_f$

The same (a circle of radius 4 with center $\left(-\frac{\sqrt{2}}{2}, 30\right)$ and a circle of radius 4 with center $\left(\frac{\sqrt{2}}{2}, 30\right)$), but under the inner part of the horn torus (two small circles at the bottom of the image are located on the surface of the horn torus).



 $\mathsf{T},\mathsf{S},\mathsf{O},\mathsf{O}_p,\mathsf{Z},\mathsf{Z}_t,\mathsf{Z},\mathsf{s}_1,\mathsf{s}_2,\mathsf{s}_3,\mathsf{Ox},\mathsf{Oy},\mathsf{C}_p,\mathsf{C}_t,\mathsf{L}_p,\mathsf{L}_t,\mathsf{C}_f$

Two circles. A circle of radius 2 with center (2, 2) and a circle of radius 1 with center (2, 3).

Vyacheslav Puha